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Convective Heat Transfer
in Microchannels of Noncircular
Cross Sections: An Analytical
Approach
Analytical solutions are presented for velocity and temperature distributions of laminar
fully developed flow of Newtonian, constant property fluids in micro/minichannels of
hyperelliptical and regular polygonal cross sections. The considered geometries cover
several common shapes such as ellipse, rectangle, rectangle with round corners, rhom-
bus, star-shape, and all regular polygons. The analysis is carried out under the condi-
tions of constant axial wall heat flux with uniform peripheral heat flux at a given cross
section. A linear least squares point matching technique is used to minimize the residual
between the actual and the predicted values on the boundary of the channel. Hydrody-
namic and thermal characteristics of the flow are derived; these include pressure drop
and local and average Nusselt numbers. The proposed results are successfully verified
with existing analytical and numerical solutions from the literature for a variety of cross
sections. The present study provides analytical-based compact solutions for velocity and
temperature fields that are essential for basic designs, parametric studies, and optimiza-
tion analyses required for many thermofluidic applications. [DOI: 10.1115/1.4006207]
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1 Introduction

Advances in microfabrication technologies make it possible to
make microchannels with various cross sections in microfluidic
devices. The convective flow and heat transfer in these channels,
apart from their theoretical interest, are of considerable practical
importance for the following applications: microelectronics cool-
ing [1], microelectromechanical systems (MEMS) [2], fuel cell
technology [3,4], microreactors [5], and medical and biomedical
devices [6]. The developments in the MEMS devices naturally
require cooling systems that are equally small. Among the novel
methods for thermal management of the high heat fluxes found in
microelectronic devices, microchannel heat sinks are the most
effective [7]. In addition, porous materials and microchannels
filled with porous media can be modeled as networks of micro-
scale conduits with noncircular cross sections [8,9]; thus, transport
properties of porous structures are closely related to the geometry
of the considered microchannels. A proper understanding of fluid
flow and heat transfer in these microscale systems is, therefore,
essential for their design and operation.

Several experimental studies have confirmed that the contin-
uum theory holds in micron size channels; see, for example, Refs.
[10–13]. Thus, existing solutions for large scale ducts are also ap-
plicable to microchannels. Moreover, due to small scales, fully
developed condition is achieved very fast in the microchannels
[14]. As such, the fully developed assumption is reasonable in the
analysis of transport phenomena through microchannels.

The important parameters for design of microchannel chips and
their analysis are pressure drop and heat transfer rate. Bahrami
et al. [15,16] have developed a general model for predicting pres-
sure drop in microchannels of arbitrary cross section with contin-
uum and slip regimes on channel walls. Recently, Akbari et al.

[17] have extended the model of Refs. [15,16] to arbitrary cross
section channels with slowly varying cross sections. Using a simi-
lar approach, Sadeghi et al. [18] have reported a general model for
estimating the Nusselt number in arbitrary cross section channels.
However, these general models do not provide any information
about the velocity and temperature distributions.

Accurate information on the velocity and temperature fields are
particularly important in devising efficient strategies in a host of
engineering applications such as microfluidic, lab-on-chip devi-
ces, and fuel cell technologies, to name a few. As such, different
methods have been used in the literature to analyze the problem of
fully developed laminar flow in noncircular channels, such as
analogy method, complex variables method, conformal mapping
method, finite difference method, and point matching method
[19]. The difficulty for obtaining an analytical solution for this
problem by means of the well known classical techniques resides
in the impossibility of the separation of variables. An additional
difficulty is due to the nonregular two-dimensional characteristics
of the cross section.

Sparrow and Haji-Sheikh [20] proposed a method of least
squares matching of boundary values for fully developed laminar
flow in ducts of arbitrary cross section. It was an improved version
of the point matching technique, which was previously employed
by Sparrow et al. [21]. Tyagi [22] analyzed the steady laminar
forced convection heat transfer in the fully developed flow of
liquids through a certain class of channels including equilateral
triangular and elliptical tube, using complex variables technique.
Shah [23] presented a least squares matching technique to analyze
the fully developed laminar fluid flow and heat transfer in ducts of
various cross sections. Richardson [24] reported a Leveque solu-
tion for flow through elliptical channels. A comprehensive survey
of analytical solutions and alternate methods to study such trans-
port phenomena and interpret the results for 25 different geome-
tries, the pertinent literature is published by Shah and London
[19]. Abdel-Wahed and Attia [25] evaluated hydrodynamic and
thermal characteristics of fully developed laminar flow in an
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arbitrarily shaped triangular duct using a finite difference tech-
nique. Maia et al. [26] solved the heat transfer problem in ther-
mally developing laminar flow of a non-Newtonian fluid in
elliptical ducts by using the generalized integral transform tech-
nique. They transformed the axes algebraically from the Cartesian
coordinate system to the elliptical coordinate system in order to
avoid the irregular shape of the wall in the elliptical duct. How-
ever, this method cannot be used in more complex geometries for
which transformation is not possible. In order to develop a general
approach applicable to various noncircular geometries, Tamayol
and Bahrami [27] employed point matching technique for deter-
mining the velocity distribution of fully developed laminar flow in
straight channels of regular polygonal and hyperelliptical cross
section. However, they did not consider the thermal problem.

In spite of numerous studies available in the literature for pres-
sure drop and Nusselt number, to the best knowledge of authors,
velocity and temperature distributions have not been reported in
the literature for many of noncircular cross sections. As such, in
this study, analytical solutions are presented for velocity and tem-
perature distributions of laminar fully developed flow of Newto-
nian, constant property fluids through micro/minichannels of both
hyperelliptical and polygonal cross-sectional geometries subjected
to H2 thermal boundary condition, i.e., constant heat flux bound-
ary condition [19]. To evaluate the convective term in the energy
equation, first the momentum equation is solved. Constant heat
flux boundary condition is then applied to find the solution of the
energy equation for the considered equations. The considered geo-
metries include (i) hyperelliptical channels, encompassing con-
cave/convex shapes from star-shaped, rhombic, elliptical,
rectangular with round corners, and rectangular; and (ii) regular
polygon ducts, which covers several common shapes from equilat-
eral triangular, squared, pentagonal, hexagonal, and to circular.
The proposed solution is presented in a single unique format that
covers all the above mentioned cross sections.

2 Problem Statement

Fully developed, steady-state, laminar, constant properties, and
incompressible flow in straight micro/minichannels of uniform
cross section is studied. In addition, the noncontinuum effects

such as slip velocity on the channel walls are neglected. Thus, the
present solutions are valid for flow with Knudsen numbers (k=Dh)
less than 0.01, where k is the molecular mean free path [28,29].
The cross sections investigated in the present study are the hyper-
ellipse and the regular polygon, which will be discussed in details
in Sec. 2.1.

2.1 Considered Geometries. In the first quadrant, a hyperel-
lipse is described by

r0 ¼
a

cos hð Þn þ sin h=eð Þnð Þ1=n
; 0 < e ¼ b

a
� 1 (1)

where e is the aspect ratio, a and b are the major and minor axes
of the cross section, respectively. As shown in Fig. 1, by varying
parameter n, several geometries can be created. For examples, Eq.
(1) with n¼ 0.5 results in a star-shaped geometry. n¼ 1 results in a
rhombus and when n¼ 2 yields an ellipse; for a ¼ b, the conse-
quent geometry is a circle. For n>2, a rectangle with round corners
is created and when the resulting geometry becomes a rectangle; in
the special case of a ¼ b, it represents a square and for a� b, it
yields parallel plates. It should be noted that as a result of manufac-
turing processes, some of the flow passages have round corners;
thus rectangle with round corner can be observed in many practical
applications. The cross-sectional area of a hyperellipse can be
expressed in terms of the gamma function, CðxÞ, [30]

A ¼ 41�1=na2e
ffiffiffi
p
p C 1þ 1

n

� �

C
1

2
þ 2

n

� � (2)

The perimeter of the hyperellipse does not have a closed form so-
lution and must be calculated from the following integral:

Cc ¼ 4

ðp=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dr0

dh

� �2

þ r0
2

s
dh (3)

Fig. 1 Hyperelliptical cross sections for e ¼ 1
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As shown in Fig. 2, the m-sided regular polygon ducts covers a
wide range of geometries. For m¼ 3, the consequent geometry is
an equilateral triangle; when m¼ 4 and 6 the shapes become a
square and a hexagon, respectively. A circle is a polygon with in-
finite number of sides, i.e., m!1. As shown in Fig. 2, all the
hatched regions surrounded by symmetry lines are triangles with
different vertex angles.

3 Problem Formulation

3.1 Momentum Equation. The liquid flow in minichannels
and microchannels in the absence of any wall surface effects, such
as the electrokinetic or electroosmotic forces, is not expected to
experience any fundamental deviation from the continuum theory
employed in microfluidic applications [31]. Gad-el-Hak [32]
argued that liquids such as water should be treated as continuous
media with the results obtained from classical theory being appli-
cable in channels larger than 1 lm.

The compressibility effects can be neglected for the Mach num-
bers lower than 0.3 [33]; thus, the present analysis is acceptable
for all Newtonian liquids and gas flows with Ma< 0.3. For lami-
nar flow with negligible gravitational effects subjected to the
abovementioned assumptions, momentum equation reduces to the
Poisson’s equation [33]

dP

dz
¼ l

@2u

@ r2
þ 1

r

@ u

@ r
þ 1

r2

@2u

@ h2

� �
(4)

where l is the fluid viscosity, P is pressure, and u is the fluid ve-
locity along the channel axis. Using the geometrical symmetry,
only a portion of the cross section is considered in the analysis, as
shown in Fig. 3. Applicable boundary conditions for hyperellipti-
cal channels are

@ u

@ h

����
h¼p

2

¼ 0;
@ u

@ h

����
h¼0

¼ 0 ; u r0ð Þ ¼ 0 (5)

The first two equations are obtained from the existing symmetry
in the hyperellipse geometry. The general solution of the Pois-
son’s equation, Eq. (4), in the cylindrical coordinate system
is [34]

u ¼ A0 þ B ln r � r2

4l
dP

dz

� �

þ
X1
k¼1

Ckrk þ Dkr�k
� �

Ek cos kh þ Fk sin khð Þ (6)

The unknown coefficients A0, B, Ck, Dk, Ek, and Fk should be cal-
culated through applying the boundary conditions, Eq. (5). At
r¼ 0, the velocity must have a finite value; thus, B¼Dk ¼ 0.
Since dP=dz remains constant for fully developed flows, Eq. (6)
can be simplified as

u ¼ 1

l
� dP

dz

� �
A1 �

r2

4
þ
X1
k¼1

rk
� �

Ek cos kh þ Fk sin khð Þ
" #

(7)

where A1, Ek, and Fk are redefined. The symmetry conditions at
h¼ 0 and h ¼ p=2 result in Fk ¼ 0 and k¼ 2, 4, 6,..., respectively.
After nondimensionalizing, Eq. (7) reduces to

u� ¼ A1 �
g2

4
þ
X1
i¼1

Ci g2i cos 2ih
� �

;

u� ¼ u

1

l
� dP

dz

� �
a2

; g ¼ r

Lc
¼ r

a

(8)

The last boundary condition, i.e., the no-slip condition,
u� g0ð Þ ¼ 0, on the channel wall should be used to calculate the
rest of unknown coefficients in Eq. (8). Substituting for g0 from
Eq. (1), one can write

A1�
1

4

1

cos hð Þn þ sin h=eð Þnð Þ2=n

þ
X1
i¼1

Ci
cos 2ih

cos hð Þn þ sin h=eð Þnð Þ2i=n

 !
¼ 0 (9)

This equation is a function of h. To evaluate the coefficients, fol-
lowing Ref. [23], we truncate the series from the q th term and

Fig. 2 Regular polygons with different number of sides

Fig. 3 Considered geometry for modeling (a) hyperelliptical
and (b) regular polygonal cross section and the applied bound-
ary conditions
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apply Eq. (9) over a finite number of different h s and solve the
resulting set of linear equations.

The same approach can be followed for polygonal ducts, shown
in Fig. 3. The difference between the two geometries is the loca-
tion of the symmetry lines. The applicable symmetry boundary
conditions for the polygonal cross section are

@ u

@ h

����
h¼p

m

¼ 0 ;
@ u

@ h

����
h¼0

¼ 0 (10)

where m is the number of sides. Using Eq. (10), the dimensionless
velocity distribution becomes

u� ¼ A1 �
g2

4
þ
X1
i¼1

Ci gmi cos mh
� �

;

u� ¼
u tan

p
m

� 	2

1

l
� dP

dz

� �
s2

; g ¼ r

Lc
¼

r tan
p
m

s

(11)

Applying no-slip boundary condition, the unknown coefficients in
Eqs. (8) and (11) can be determined.

One of the techniques that can be employed to apply the no-slip
boundary is the point matching technique [21,27,35,36]. In this
approach, the infinite series can be truncated at a finite number of
terms, q. Then, qþ 1 points are selected on the periphery and the
boundary condition is satisfied exactly at these qþ 1 points to
determine the same number of unknown coefficients of the trun-
cated series. The velocity and temperature distributions are then
obtained in a closed-form series. The limitation of this method is
that by increasing the number of points on the boundary, one can-
not necessarily obtain a more accurate result since the degree of
the polynomial is increased, which may result in overfitting. Using
point-matching technique, Tamayol and Bahrami [27] could not
predict the velocity distribution and pressure drop for concave
geometries such as star-shaped channels. To overcome this limita-
tion, the least squares method is used in the present study. It
should be noted that the pressure drop values for convex geome-
tries reported by Tamayol and Bahrami [27] were the same as the
results reported by Shah and London [19] and predicted by the
least squares method in the present study.

The least squares method differs from the point-matching
method in that more than q points along the boundary are
employed to determine q unknown coefficients in the truncated se-
ries. Therefore, we will have an overdetermined linear system of
equations. The coefficients are evaluated by minimizing the mean
squared error of the boundary conditions at j points (j > q) [37]. It
should be noted that increasing the number of terms, q, in the se-
ries solution does not guarantee more accuracy and it depends on
the nature of the series solution. For each geometry, we performed
a comprehensive study to select the number of terms in the series
solution which yielded the minimum error in satisfying the wall
boundary conditions; two or three terms for most cases. Moreover,
the number of points on the channel wall, j, were in the range of
200–250.

3.2 Energy Equation. In addition to idealizations made for
the momentum equation, for simplifying the energy equation,
axial heat conduction is neglected, following Ref. [38]. This term
is negligible when Péclet number, which measures the ratio of the
bulk transport (convection) to the diffusion transport, is high (see
Ref. [28] for more details). Moreover, in continuum and slip-flow
regimes, viscous dissipation is negligible. Viscous heat generation
is significant in extremely viscous liquids or gas flows with rela-
tively high velocity and temperature gradients [39]. Thus, the
energy equation for laminar hydrodynamically and thermally
developed flow becomes

u

a
@T

@z
¼ @2T

@ r2
þ 1

r

@ T

@ r
þ 1

r2

@2T

@ h2
(12)

where a is thermal diffusivity of the fluid. The associated thermal
boundary condition is considered as axially constant heat transfer
rate per unit channel length, with peripherally uniform heat flux.
For this boundary condition and fully developed flow, it can be
shown that [40]

@T

@z
¼ dTm

dz
¼ q00Cc

q Ac um cp
(13)

where cp is the specific heat of fluid, Ac is the channels cross
section, Cc is the cross section perimeter, um and Tm are the mean
velocity and temperature, respectively, defined as

um ¼

ð
Ac

u dAc

Ac
; Tm ¼

ð
Ac

uT dAc

um Ac
(14)

Substituting Eqs. (12) and (7) into Eq. (13) yields

@2T

@ r2
þ 1

r

@ T

@ r
þ 1

r2

@2T

@ h2

¼ 1

l
dP

dz

� �
A1 �

r2

4
þ
X1
k¼1

rk
� �

Ek cos kh þ Fk sin khð Þ
" #

� q00Cc

q a Ac um cp
(15)

which in the dimensionless form for hyperelliptical cross section
becomes

@2T�

@ g2
þ 1

g
@ T�

@ g
þ 1

g2

@2T�

@ h2
¼ 1 � g2

4A1

þ
X1
i¼1

Ci

A1

g2i cos 2ih
� �" #

(16)

and for regular polygonal cross section reads

@2T�

@ g2
þ 1

g
@ T�

@ g
þ 1

g2

@2T�

@ h2
¼ 1 � g2

4A1

þ
X1
i¼1

Ci

A1

gmi cos mih
� �" #

(17)

and where T� is defined as

T� ¼ T

q00Cc L2
c

q a Ac u� cp

(18)

where Lc is the cross-sectional length-scale, introduced in Eqs. (8)
and (11) for hyperelliptical and polygonal cross sections, respec-
tively. As discussed by Sparrow and Loeffler [36], the solution of
Eq. (15) is expressed as the sum of separate particular and homo-
geneous solutions as follows:

T� ¼ T�p þ T�h (19)

The particular solution is [34]

T�p ¼
A1

g2

4
� g4

64
þ
X1
i¼1

Ci

4 2iþ 1ð Þ g2iþ2 cos 2ih
� �

hyperellipse

A1

g2

4
� g4

64
þ
X1
i¼1

Ci

4 miþ 1ð Þ gmiþ2 cos mih
� �

polygon

8>>><
>>>:

(20)
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and the general homogeneous solution becomes

T�h ¼ d0 þ
X1
j¼1

gj dj cos jh þ ej sin jh
� �

(21)

Appling the symmetry boundary conditions, we obtain: ej¼ 0 and
j¼ 2; 4 ; ::: and j¼m; 2m ; ::: for elliptical and polygonal cross
sections, respectively. Thus, Eq. (21) can be written as

T�h ¼
d0 þ

X1
j¼1

g2j dj cos 2jh
� �

hyperellipse

d0 þ
X1
j¼1

gmj dj cos mjh
� �

polygon

8>>>><
>>>>:

(22)

Therefore, the temperature distribution becomes

T� ¼

A1

g2

4
� g4

64
þ
X1
i¼1

Ci

4 2iþ1ð Þ g2iþ2 cos 2ih
� �

þ

d0þ
X1
j¼1

g2j dj cos 2jh
� � hyperellipse

A1

g2

4
� g4

64
þ
X1
i¼1

Ci

4 miþ1ð Þ gmiþ2 cos mh
� �

þ

d0þ
X1
j¼1

gmj dj cos mjh
� � polygon

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(23)

The unknown coefficients should be determined through applying
the constant heat flux per unit area on the channel wall

@ T�

@n

����
g¼g0

¼ A�c u�m
C�c

(24)

Table 1 Velocity and temperature distribution coefficients in Eqs. (8) and (23) for hyperelliptical channels

n¼ 40, Rectangle

e¼ 0.2 e¼ 0.25 e¼ 0.4 e¼ 0.5 e¼ 0.6 e¼ 0.8 e¼ 1

A1 0.0198 0.0309 0.0768 0.1141 0.1533 0.2293 0.2948
C1 0.2600 0.2617 0.2401 0.2062 0.1649 0.0781 0.0000
C2 � 0.0250 � 0.0369 � 0.0617 � 0.0665 � 0.0657 � 0.0577 � 0.0479
d1 � 0.0068 � 0.0083 � 0.0084 � 0.0078 � 0.0069 � 0.0040 0.000
d2 � 0.0013 � 0.0003 0.0000 0.0000 0.0000 0.0000 0.0028

n¼ 4, Rectangle with round corner

e¼ 0.2 e¼ 0.25 e¼ 0.4 e¼ 0.5 e¼ 0.6 e¼ 0.8 e¼ 1

A1 0.0199 0.0309 0.0755 0.1116 0.1495 0.2231 0.2867
C1 0.2508 0.2475 0.2192 0.1874 0.1499 0.0712 0.000
C2 � 0.0188 � 0.0259 � 0.0413 � 0.0454 � 0.0459 � 0.0415 � 0.0347
d1 � 0.0076 � 0.0088 � 0.0088 � 0.0085 � 0.0077 � 0.0046 0.000
d2 � 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0028

n¼ 2, Ellipse

e¼ 0.2 e¼ 0.25 e¼ 0.4 e¼ 0.5 e¼ 0.6 e¼ 0.8 e¼ 1

A1 0.0192 0.0294 0.0690 0.1000 0.1324 0.1951 0.250
C1 0.2308 0.2206 0.1810 0.1500 0.1176 0.0549 0
d1 � 0.0080 � 0.0065 � 0.0083 � 0.0082 � 0.0075 � 0.0046 0

n¼ 1, Rhomboid

e¼ 0.2 e¼ 0.25 e¼ 0.4 e¼ 0.5 e¼ 0.6 e¼ 0.8 e¼ 1

A1 0.0151 0.0222 0.0470 0.0647 0.0824 0.1164 0.1474
C1 0.1980 0.1769 0.1161 0.0833 0.0578 0.0230 0.0000
C2 0.0421 0.0580 0.0979 0.1133 0.1196 0.1137 0.0963
d1 � 0.0025 � 0.0029 0.0000 0.0000 0.0000 0.0000 0.0000

n¼ 0.5, Star-shape

e¼ 0.2 e¼ 0.25 e¼ 0.4 e¼ 0.5 e¼ 0.6 e¼ 0.8 e¼ 1

A1 0.1282 0.1073 0.0853 0.0631 0.0424 0.0245 0.0115
C1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C2 0.1191 0.1476 0.1831 0.2267 0.2708 0.2778 0.2520
d1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2 Velocity and temperature distribution coefficients in
Eqs. (11) and (23) for polygonal channels

m A1 C1 C2 d1

3 0.0833 � 0.1667 0 0
4 0.1473 � 0.0909 0.0103 0
5 0.1823 � 0.0558 0.0095 0
6 0.2024 � 0.0374 0.0075 0
7 0.2149 � 0.0267 0.0058 0.0006
8 0.2231 � 0.0199 0.0046 0.0004
9 0.2288 � 0.0154 0.0036 0.0003
10 0.2328 � 0.012 0.003 0.0002
20 0.2458 � 0.0028 0.0007 0
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Table 3 Examples of the present solution for fully developed velocity and temperature distributions

Cross section Aspect ratio Velocity profile (u�) Temperature profile (T ¼ T� � T�b )

e ¼ 1
0:0424� 1

4
g2

þ 0:2708g4 cos 4h

� 0:0009þ 0:0106g2 � g4

64

þ 0:0135g6 cos 4h

e ¼ 0:5

0:0647� 1

4
g2

þ 0:0833g2 cos 2h

þ 0:1133g4 cos 4h

� 0:0014þ 0:0162g2 � g4

64

þ 0:0069g4 cos 2h

þ 0:0057g6 cos 4h

e ¼ 0:5 0:1� 1
4
g2 þ 0:15g2 cos 2h

� 0:0037þ g2

40
� g4

64

� 0:0082g2 cos 2h

þ 0:0075g4 cos 2h

e ¼ 0:5

0:1141� 1

4
g2

þ 0:2062g2 cos 2h

� 0:0665g4 cos 4h

� 0:0057þ 0:1141
g2

4
� g4

64

� 0:0078g2 cos 2h

þ 0:2062
g4

12
cos 2h

� 0:0665
g6

20
cos 4h

—
0:0833� 1

4
g2

� 0:1667g3 cos 3h

� 0:0024þ 0:0208g2 � g4

64

� 0:0104g5 cos 3h

—

0:1473� 1

4
g2

� 0:0909g4 cos 4h

þ 0:0103g8 cos 8h

� 0:0067þ 0:1473
g2

4
� g4

64

� 0:0909
g6

20
cos 4h

þ 0:0103
g10

36
cos 8h

—

0:1823� 1

4
g2

� 0:0558g5 cos 5h

þ 0:0095g10 cos 10h

� 0:0099þ 0:1823
g2

4
� g4

64

� 0:0558
g7

24
cos 5h

þ 0:0095
g12

44
cos 10h

Fig. 4 Dimensionless velocity and temperature contours in a star-shaped channel
with 5 0.5 and 5 1, using (a) Eq. (8) and (b) Eq. (23)
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where A�c and C�c are dimensionless perimeter and cross-sectional
area defined as A�c ¼ Ac=L2

c and C�c ¼ Cc=Lc. The normal gradient
of temperature is

@ T�

@n
¼ n̂: ~rT� (25)

where n̂ is the normal vector of the boundary defined by
F g; hð Þ ¼ 0

F g; hð Þ ¼ g cos hð Þn þ sin h
e

� �n
 �1=n

� 1 hyperellipse

g cos h� cos p=mð Þ polygon

8<
:

(26)

Using a similar approach employed to solve the momentum equa-
tion, the infinite series in Eq. (23) is truncated. The coefficients dj

are calculated by the least squares point matching technique.

4 Results and Discussions

In order to calculate velocity and temperature distributions, the
coefficient in Eqs. (8), (11) and (23) should be determined. There-
fore, a least squares point matching technique has been employed
and the calculated coefficients are reported in Tables 1 and 2.
Considering just the first two terms of the infinite series in the sol-
utions to the velocity and temperature distributions resulted in an
average error of less than 1% in applying the boundary value for
the various geometries that were studied in this work. As an exam-
ple, Table 3 shows the closed form velocity and temperature rela-
tions for some examples from the studied geometries. It should be
mentioned that the velocity and temperature solutions for star-
shaped and rectangular-with-round-corners channels cannot be
found elsewhere. The former one has application in analyzing
foams and packed beds of fibers and the later one is common in
micro fabrication process of rectangular microchannels. Some
examples of the velocity contours and distributions are plotted for
ducts with star-shaped and square with round corners cross
sections in Figs. 4 and 5, respectively.

Fig. 5 Dimensionless velocity and temperature contours in a square with round
corners duct, 5 4, using (a) Eq. (8) and (b) Eq. (23)

Fig. 6 Comparison of the values of Poiseuille number in chan-
nels of hyperelliptical cross section calculated using the pres-
ent model with numerical results of Shah [23]

Fig. 7 Comparison of the values of Nusselt number in chan-
nels of hyperelliptical cross section calculated using the
present model with numerical results of Shah [23]
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Two important characteristics of convective flow in channels
are the Poiseuille number and the Nusselt number. The Poiseuille
number, f Re, is the common dimensionless number used for ana-
lyzing pressure drop in channels and is defined by

f Re ¼ � 1

l
dP

dz
� D2

h

2um
(27)

where Dh is the hydraulic diameter. The Nusselt number, Nu is
the ratio of convective to conductive heat transfer normal to the
boundary. The local Nusselt number is defined by

Nu ¼ Dh

Tw � Tb

@T

@n

����
r¼ro

(28)

where Tw is the wall temperature and Tb is the fluid bulk tempera-
ture defined as

Tb ¼

ð
Ac

uTdAcð
Ac

udAc

(29)

The average Nusselt number is defined by using the average wall
temperature in Eq. (28). The results for the Poiseuille number and
Nusselt number are plotted in Figs. 6 and 7 for hyperelliptical
channels and Fig. 8 for polygonal ducts and are compared with an-
alytical/numerical data found in the literature [19,23]. It can be
seen that the proposed approach is in a very good agreement with
the numerical data and the deviations between the model and the
numerical results less are less than 3%.

It should be noted that a cross section with a higher f Re and
Nu does not essentially result in higher pressure drop or heat
transfer rate. For example, although circular cross section has the
highest f Re among polygonal channels as shown in Fig. 8, it
results in the lowest pressure drop.

Tamayol and Bahrami [27] provided a compact relationship for
f Re; however, the following equation is more compact and can
accurately predict f Re for all polygonal channels:

f Re ¼ �13:017m�1:407 þ 16 (30)

No compact relationship was found for the Nusselt number in the
pertinent literature. As such, a similar relationship is proposed for

determining the Nusselt number in regular polygonal channels
subjected to H2 thermal boundary condition

Nu ¼ �36:688m�2:425 þ 4:36 (31)

Equations (30) and (31) can predict f Re and Nu values for polyg-
onal ducts with uncertainty less than 2%, respectively.

In Fig. 9, the local Nusselt number, calculated from Eq. (31), is
plotted for channels with hyperelliptical cross section. The results
indicate that Nusselt number varies over the periphery of the
channel with a minimum at the corners. For geometries with
n < 2, the corners are located at h ¼ 0 ; p=2 and the maximum
value of Nulocal occurs at h ¼ p=4. In circular tubes, n ¼ 2, Nus-
selt number is uniformly distributed since no corner exists. For
convex geometries with n > 2, corners are located at h ¼ p=4 and
as a result, Nulocal have a minimum at h ¼ p=4.

5 Summary and Conclusions

Analytical solutions were presented for laminar fully developed
flow and heat transfer in micro/minichannels of different noncir-
cular cross sections. Starting from general solution of the Pois-
son’s equation, a least squares point matching technique was used
for applying the wall boundary conditions in order to minimize
the error of the boundary values.

Velocity and temperature distributions were obtained for vari-
ous geometries with different shapes and aspect ratios, from
which hydrodynamic and thermal characteristics of the flow were
calculated. The considered geometries encompassed a wide range
of shapes such as ellipse, rectangle, rectangle with round corners,
rhombus, star-shape, and all regular polygons. However, this
approach is applicable to all geometries with at least two symme-
try lines. Therefore, the present approach can be considered as a
general solution. The compact solutions were obtained by truncat-
ing the infinite series in the solutions to the velocity and tempera-
ture distributions from the second or third term. The Nusselt and
Poiseuille numbers were compared with the published data of
Refs. [19,23] for the considered channels, which resulted in a rela-
tive difference of less than 3%.

Also, using this method, the local Nusselt numbers were deter-
mined. For star-shaped channels, the local Nusselt number near
the corners is close to zero, which is a consequence of the rela-
tively low velocity in these regions due to the high wall shear
stress. The present compact solutions for the velocity and

Fig. 8 Comparison of the values of Poiseuille number and Nus-
selt number in channels of polygonal cross section calculated
using the present model with numerical results of Shah [23] Fig. 9 Variation of the local Nusselt number in channels of

hyperelliptical cross section, e 5 1
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temperature distributions provide a powerful tool for design, para-
metric studies, and optimization analyses required for microchan-
nel heat exchangers, heat sinks, fuel cell technology, and
microfluidic devices.
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Nomenclature
a ¼ hyperellipse major axis, m

Ac ¼ cross-sectional area, m2

b ¼ hyperellipse minor axis, m
cp ¼ specific heat, J/K kg

Dh ¼ hydraulic diameter, 4A=Cc, m
f ¼ fanning friction factor

f Re ¼ Poiseuille number
Ip ¼ polar moment of inertia about the centroid, m4

k ¼ thermal conductivity, W=K m
Lc ¼ characteristic length-scale, m4

m ¼ number of sides in regular polygonal ducts
n ¼ exponent in hyperellipse formula

Nu ¼ Nusselt number
P ¼ pressure, N=m2

Q ¼ volumetric flow rate, m3=s
Re ¼ Reynolds number

s ¼ half the length of the sides in polygonal ducts, m
T ¼ temperature, K

T� ¼ dimensionless temperature
u ¼ axial velocity, m=s

u� ¼ dimensionless velocity, Eq. (8)

Greek Symbols
Cð:Þ ¼ gamma function

Cc ¼ perimeter, m
e ¼ cross-sectional aspect ratio, e ¼ b=a
g ¼ nondimensional coordinate
l ¼ viscosity, N s=m2

h ¼ coordinate system
hm ¼ half of the vertex angle in polygon with m sides

Subscriptsffiffiffi
A
p
¼ square root of cross-sectional area,

w ¼ wall
b ¼ bulk
a ¼ hyperellipse major axis, m

Ac ¼ cross-sectional area, m2

b ¼ hyperellipse minor axis, m
cp ¼ specific heat, J/K kg

Dh ¼ hydraulic diameter, 4A/Cc, m
f ¼ fanning friction factor

f Re ¼ Poiseuille number
k ¼ thermal conductivity, W=K m

Ip ¼ polar moment of inertia about the centroid, m4

m ¼ number of sides in regular polygonal ducts
n ¼ exponent in hyperellipse formula

Nu ¼ Nusselt number
P ¼ pressure, N=m2

Q ¼ volumetric flow rate, m3=s
Re ¼ Reynolds number

s ¼ half the length of the sides in polygonal ducts, m
T ¼ temperature, K

T� ¼ dimensionless temperature
u ¼ axial velocity, m=s

u� ¼ dimensionless velocity, Eq. (8)
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